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Endohedral fullerene complexes incorporating noble dases
atomic nitrogef have been prepared by insertion of these atoms
into pristine Go under forced conditions. However, the yields of
these materials have been as low as 0.4% t8%0If a sufficiently
large orifice is opened on a fullerene surface, such atoms would
be encapsulated efficiently by insertion through the orifice. In this
respect, Rubin et al. prepared an open-cage fullerene derigitive
and succeeded in introducing a He atom ang anbllecule in 1.5%
and 5% vyields, respectivefyTo achieve 100% encapsulation of
these gas molecules, it is desirable to have a larger orifice on the,_-,-gure 1. Structures of open-cage fullerene derivatideand 2 and the
fullerene surface. We recently synthesized an open-cage fullereneoptimized structure of b@1 calculated at the B3LYP/6-31G** level of
derivativel, which has a 13-membered-ring orifice on g Cage theory. The H molecule is shown as a space-filling model, and the host
(Figure 1). The derivativel has an orifice of 5.64 A along the ~ molecule is shown as a stick model.
long axis and 3.75 A along the short &ind is expected to be a
better host molecule for small atoms and molecules tharere
we show that encapsulation of & hiolecule intol does take place
to produce the endohedral complex@il in 100% vyield, and that
H,@GCs can be generated in the gas phase by restoration of the (;332)

Cso cage from H@1 upon laser irradiation. 39s | (gﬁezs o ‘

To examine the feasibility of insertion of small atoms and (O-QS’M \‘\‘ ! b
molecules through the orifice df, theoretical calculations using ../ it aw;ﬂ‘w GRS SR ‘
hybrid density functional theory (B3LYP/6-31G**//B3LYP/3-21G) 88 84 80 76 72 88 64 L64 U68B _7.2 _76ppm
were conductefl.The energies required for insertion of He, Ne, Figure 2. H NMR spectrum (300 MHzg-dichlorobenzenel) of H.@1
H,, and Ar intol were calculated to be 18.9, 26.2, 30.1, and 97.7 together with the values of the spifattice relaxation timd obtained for
kal/mol, respectively, considerably lower than the corresponding ?r]\éa%c:luygdzt;a(l)icgﬁzdplfi:c;[]zo(r)?s;;lﬁgiﬂrztgendalssérlrr:pp;:rentheses are shown
energies for2 (24.5, 40.6, 41.4, and 136.3 kcal/mélpdicating
that encapsulation of atoms and molecules as small as He, Ne, andvith the intensities of well-resolved aromatic-proton signals at
H in 1is quite promising. 8.55 (1 H), 8.38 (2 H), and 8.26 (1 H), clearly demonstrating that

Molecules or molecular systems based on carbon that can freely100% encapsulatiomas achieved.
absorb and eject hydrogen are currently attracting great interest as  The encapsulation rate was highly dependent on the pressure of
hydrogen storage materidl§hus, the encapsulation obigas into H,: the yield of H@1 was 90% under 560 atm of +and 51%

1 was attempted by treatment of a powded afith a high-pressure under 180 atm of K with all other conditions the same.

_ _o-dichlorobenzene

of H, (800 atm) at 200C in an autoclave. After 8 h, formation of To gain insight about the properties of the folecule inside

the endohedral complex @1 without any decomposition df was of 1, the spin-lattice relaxation time ;) of each proton in the

confirmed by HPLC andH NMR, as described below. IH NMR was measured, using both a solution sealed under
First, the HPLC analysis (Buckyprep/toluene) showed a single vacuum 1074 Torr) and an oxygen-saturated solution of @i

peak at exactly the same retention time as thaflfddext, the'H in o-dichlorobenzenel,. The T; values for the signals at 8.55

NMR spectrum of the resulting material showed a new sharp signal (6-pyridyl), 8.38 (2,6-phenyl), and 8.26 (3-pyridyl) were 3.9 s (0.9
at high field,6 —7.25 ppm, in addition to the signals for aromatic s), 1.2 s (0.7 s), and 1.2 s (0.6 s), respectively, which are in the
protons appearing with exactly the same chemical shifts as thoserange of normal values for aromatic protons. In sharp contrast, a
for 1 itself (Figure 2). This new signal is assigned to the resonance very shortT; value of 0.2 s (0.2 s) was obtained for the encapsulated
of the encapsulatedHnolecule, which is subjected to the strong H, protons. [The values in parentheses are those obtained from the
shielding effect of the fullerene cage. This signal is 1.82 ppm more oxygen-saturated solution.] Generallf;, values are sensitive to
upfield-shifted than the pisignal of H@2 (0 —5.43)# The value freedom in the motion of the molecule and to an interaction with
of 6 —7.25 is between théH NMR chemical shifts for Hinside paramagnetic species such g&?@heT; value for the encapsulated

of 1 calculated using the gauge-invariant atomic orbital apprbach H, molecule was found to suffer no influence of oxygen at all,
by use of the HartreeFock method (GIAG-HF/6-311G**// confirming that it is completely isolated from the outside by the
B3LYP/6-31G**) (0 —9.00) and density functional theory (GIAO fullerene cage. The remarkably shdrt value observed for this
B3PW91/6-311G**//B3LYP/6-31G**) § —5.76), confirming the encapsulated Fmolecule might be ascribed to the interaction with
strong shielding effect inside df The integrated relative intensity ~ the 13C atom(s) in the fullerene cage or to its hindered rotation
of the signal was determined to be 2.£00.02 H by comparison caused by the cadé.
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A H,@ 1 B [ ¢, Considering the history of £ with its discovery by mass
100 R H@ 1 0 H2@Cgo| 1-Py-Ph spectrometry2 macroscopic isolatio# and organic synthesléthe
1 ‘ present result can be taken as a promising start for the macroscopic
-y | ‘ J 1-Py synthesis of H@GCs. The encapsulated Hnolecule will be an
50 MU | -co 50 \}h ELhy, 0 § excellent probe to investigate the chemical events taking place at
1854 1068 1072 a0 m } the exterior of the cage and might replace highly expendile
H@1 which has been used in NMR studies thusfar.
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3 months. However, the Hnolecule was slowly ejected when the ~ PuPs-acs.org.
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